134 research outputs found

    Role of α-Tocopherol Acetate on Nasal Respiratory Functions: Mucociliary Clearance and Rhinomanometric Evaluations in Primary Atrophic Rhinitis

    Get PDF
    Primary atrophic rhinitis is a disease of the nose and of paranasalsinuses characterized by a progressive loss of function of nasal and paranasal mucosa caused by a gradual destruction of ciliary mucosalepithelium with atrophy of serous–mucous glands and loss of bonestructures.The aim of this study was to evaluate the therapeutic effects of topic α-tochopherol acetate (vitamin E) in patients with primary atrophicrhinitis based on subjective and objective data.We analyzed 44 patients with dry nose sensation and endoscopic evidence of atrophic nasal mucosa. We analyzed endoscopic mucosascore, anterior rhinomanometry, and nasal mucociliary clearance before and after 6 months of topic treatment with α-tochopherol acetate. For statistical analysis, we used paired samples t test (95% confidence interval [CI], P <.05) for rhinomanometric and muciliary transit time evaluations and analysis of variance 1-way test (95% CI, P <.05) for endoscopic evaluation. All patients showed an improvement in “dry nose” sensation and inperception of nasal airflow. Rhinomanometric examination showed increase of nasal airflow at follow-up (P <.05); nasal mucociliaryclearance showed a reduction in mean transit time (P <.05); and endoscopic evaluation showed significative improvement of hydration of nasalmucosa and significative decreasing nasal crusts and mucusaccumulation (P <.05). Medical treatment for primary atrophic rhinitis is not clearly documented in the literature; in this research, it was demonstrated that α-ochopherol acetate could be a possible treatment for atrophic rhinitis

    The ECAPS Experiment for Solar Cell Characterization in the Stratosphere

    Get PDF
    The ECAPS project (Experimental Characterization of Advanced Photovoltaics in the Stratosphere) aims at the characterization of performance of a number of different solar cells in the stratospheric environment. ECAPS has been selected to fly as a zero-pressure balloon payload in the frame of the HEMERA H2020 project. Flight is scheduled for August 2022 from CNES’ base in Timmins, Canada. Testing solar cells in the stratosphere is of great interest for the development of High-Altitude Pseudo Satellite (HAPS) platforms, which will be equipped with high efficiency, flexible solar cells capable to operate at 20-30 km altitude for weeks or months, as well as to perform high-quality calibration of spacecraft solar cells in a near-air mass zero environment. The experiment includes a panel with up to 4 solar cells of different kinds (multi-junction GaAs, CIGS, perovskite, etc.), a dedicated I/V curve recording circuit, temperature and irradiance sensors, and an inertial measurement unit to monitor the instantaneous attitude of the gondola. During the ascent part of the flight, the I/V characteristic curves of the cells will be continuously recorded so to allow for comparison of performance of the different photovoltaic technologies in identical, real stratospheric flight conditions, as well as to detect performance changes with external temperature, irradiance and altitude. Upon recovery of the experiment, post-flight inspection will also yield useful information on the solar cell compatibility with the high altitude environment

    Challenges and Solutions for the QB50 Telecommunication Network

    Get PDF
    QB50 space mission will provide the biggest CubeSat network in orbit. A constellation of 50 CubeSats in a ‘string-of-pearls’ configuration will be launched together in January 2016 by a single rocket, into a circular orbit at 380 km altitude. Due to the atmospheric drag the orbit will decay and progressively lower layers of the atmosphere will be explored. Main goals are exploration of the lower thermosphere with multi-point measurements, re-entry research and in-orbit science and technology demonstration. In this analysis of communication functions the ground segment is analyzed, with a global overview of different architectures, the main elements of a ground station, mission and control centres, and the link between them

    A Multi-Source Harvesting System Applied to Sensor-Based Smart Garments for Monitoring Workers’ Bio-Physical Parameters in Harsh Environments

    Get PDF
    This paper describes the development and characterization of a smart garment for monitoring the environmental and biophysical parameters of the user wearing it; the wearable application is focused on the control to workers’ conditions in dangerous workplaces in order to prevent or reduce the consequences of accidents. The smart jacket includes flexible solar panels, thermoelectric generators and flexible piezoelectric harvesters to scavenge energy from the human body, thus ensuring the energy autonomy of the employed sensors and electronic boards. The hardware and firmware optimization allowed the correct interfacing of the heart rate and SpO2 sensor, accelerometers, temperature and electrochemical gas sensors with a modified Arduino Pro mini board. The latter stores and processes the sensor data and, in the event of abnormal parameters, sends an alarm to a cloud database, allowing company managers to check them via a web app. The characterization of the harvesting subsection has shown that ≈ 265 mW maximum power can be obtained in a real scenario, whereas the power consumption due to the acquisition, processing and BLE data transmission functions determined that a 10 mAh/day charge is required to ensure the device’s proper operation. By charging a 380 mAh Lipo battery in a few hours by means of the harvesting system, an energy autonomy of 23 days was obtained, in the absence of any further energy contribution

    EVOLUTION OF THE (AERO)SPACE ENGINEERING STUDIES IN ITALY IN THE PAST 20 YEARS

    Get PDF
    The paper presents the evolution and trends in the Master studies in aerospace engineering in Italy, looking at the last 20 years. In the year 2000, a major reform of the higher education in engineering took place in Italy, with the introduction of the so-called “Bologna system” and the clear separation of Bachelor and Master studies. With this reform, a relatively high flexibility was given to universities to define their program structures. The ministerial rules defined only broad subject areas within which courses and credits should be allocated. This reform allowed to diversify the educational profile within each University and, even more relevant, allowed to create mobility across the country between Bachelor and Master study programs. The paper will show the basic facts and figures in the 6 Italian Universities participating in the PEGASUS network (Politecnico di Milano, Politecnico di Torino, Università di Pisa, Università degli Studi di Napoli “Federico II”, Sapienza Università di Roma, Alma Mater Studiorum - Università di Bologna), elaborating on the impact of the potential workforce for the sector

    Image decomposition and uncertainty quantification for the assessment of manufacturing tolerances in stress analysis

    Get PDF
    This article presents a methodology for the treatment of uncertainty in nonlinear, interference-fit, stress analysis problems arising from manufacturing tolerances. Image decomposition is applied to the uncertain stress field to produce a small number of shape descriptors that allow for variability in the location of high-stress points when geometric parameters (dimensions) are changed within tolerance ranges. A meta-model, in this case based on the polynomial chaos expansion, is trained using a full finite element model to provide a mapping from input geometric parameters to output shape descriptors. Global sensitivity analysis using Sobol’s indices provides a design tool that enables the influence of each input parameter on the observed variances of the outputs to be quantified. The methodology is illustrated by a simplified practical design problem in the manufacture of automotive wheels

    Role of oxidative stress in chronic otitis media with effusion in children

    Get PDF
    Chronic otitis media with effusion (OME) is a common pathologic condition characterized by nonpurulent fluid in the middle ear (ME) that leads to moderate conductive hearing loss and flat tympanogram. During OME inflammatory cells generate large amounts of superoxide radicals to improve bactericidal activity. Overproduction of oxygen-derived free radicals induces oxidative damage in humans. Glutathione (GSH) is one of the major components of the antioxidant system that protects cells from oxidative stress. The aim of the study was to evaluate oxidative stress in chronic OME by investigation of ME fluids collected during myringotomy.  During myringotomy, fluid was collected from the ME to evaluate lipid peroxide levels in the effusion. Immunohistochemical study was also performed to assess the anatomical features of tympanic membrane. Fifty-nine children with ME effusion without any resolution after repeated medical treatments were enrolled in the study.  No morphological significant changes were observed. Lipid peroxide levels in all samples were high (mean 11.5 nmole/million cells), similar to the values found in other chronic diseases. GSH might be employed during surgery while applying ventilation tubes and after surgery to prevent oxidative stress. The high oxidant levels in chronic OME observed in our research and the improvement seen in children after antioxidant treatment suggest that oxygen-derived free radicals play an important role in chronic OME.
    • 

    corecore